

Twisted Pair Cabling Measurements

Delay/Skew

Insertion Loss, NEXT, FEXT, ACRN, ACRF

Skew = Maximum difference in propagation delay between a fastest pair to the slowest pair.

Delay/Skew Failure: Excess length, poor cable design.

Resistance Unbalance

L	ООР	PAIR UBL	P2P UBL
	VALUE (Ω))	LIMIT (Ω)
1,2	0.01		0.15
3,6	0.01		0.15
4,5	0.00		0.15
7,8	0.01		0.15

VALUE (Ω)

0.01

0.01

0.09

0.00

0.0

0.08

1,2-3,6

1,2-4,5

1,2-7,8

3,6-4,5

3,6-7,8

4,5-7,8

PAS

LIMIT (Ω)

0.20

0.20

0.20

0.20

0.20

0.20

Resistance Unbalance within a pair is a measurement of the difference in resistance between the two conductors in a balanced wire pair.

Resistance Unbalance_{within}

$$a \text{ pair} = \left[\begin{array}{c} \left| \frac{\mathbf{R}_{C1} - \mathbf{R}_{C2}}{\mathbf{R}_{C1} + \mathbf{R}_{C2}} \right| \right] 100\%$$

 R_{c1} is the DC resistance of conductor 1. R_{c_2} is the DC resistance of conductor 2. Where conductor 1 and conductor 2 are the two conductors of the same pair.

Resistance Unbalance between pairs is a measurement of the difference in parallel resistances between two balanced wire pairs

Resistance Unbalance_{betv}

ween pairs =
$$\begin{bmatrix} |\mathbf{R}_{P1} - \mathbf{R}_{P2}| \\ \mathbf{R}_{P1} + \mathbf{R}_{P2} \end{bmatrix} 100\%$$

 R_{P1} is the DC parallel resistance of the conductors of a pair. R_{P2} is the DC parallel resistance of the conductors of another pair.

Failure: Contact Resistance Issue or poor cable design. Testing is not required for field certification, but is essential to understand if a link will support higher levels of PoE.

design, reflected FEXT.

ACRN = NEXT - ILAttenuation to Crosstalk Ratio Near-End

ACRF = FEXT - ILAttenuation to Crosstalk Ratio Far-End

Failure: Poor twisting, common mode conversion, poor cable or connector design.

Failure: Excessive NEXT or Insertion Loss.

Failure: Excessive Insertion Loss or FEXT.

¹CP = Consolidation Point ²TO = Telecommunications Outlet

Return Loss

Loop Resistance

Transverse Conversion Loss

TCL

TCTL

DC Loop Resistance

Measurement, in ohms, of the total DC resistance of the wires of a pair taken together. Failure: Contact Resistance issue, length or copper cladded aluminum cable.

Transverse Conversion Loss

A ratio, expressed in dB, of the measured common mode voltage on a pair relative to the differential mode voltage on the same pair applied at the same end. TCL indicates if a pair is well balanced and with that has good immunity to external noise.

ELTCTL

 $ELTCTL = TCTL - IL_{DM}$

Transverse Conversion Transfer Loss

A ratio, expressed in dB, of the measured common mode voltage on a pair relative to the differential mode voltage applied at the opposite end of the same pair, or on either end of another pair.

Equal Level Transverse Conversion Transfer Loss

A calculation, expressed in dB, of the difference between measured TCTL and the differential mode Insertion Loss of the disturbed pair.

Failure (also for TCL): Poor cable design of production. ELTCTL, TCL and their limits are defined in the ANSI/TIA-568.2-D, but are not normative for field testing per ANSI/TIA-1152-A standard.

Formulas shown are conceptual representations of log scaled voltage ratios which are signed for loss where appropriate.

For a complete view of cable testing technology and standards information, visit our cable testing basics solutions center at www.flukenetworks.com/cabletesting.

For more information contact: 1-800-283-5853 info@flukenetworks.com

©2017, 2022 Fluke Networks, Inc. All rights reserved. Printed in U.S.A. 06/2022 220378-1989231-en